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1 In quest of an identifier for open-source components

Global momentum around software supply chain security has increased over the last few years.
High-profile cybersecurity incidents — together with new regulatory imperatives — underscore
the need for robust, verifiable identification of all software components, to clearly
identify software artifacts whose vulnerabilities are the root cause of potential attacks.

Indeed, in the European Union, the Cyber Resilience Act (CRA) [11] lays out strong re-
quirements for transparency and accountability across digital products. Similarly, recent U.S.
Executive Orders [3, 5] reinforce these same principles at US federal level. On May 12, 2021,
President Biden signed the Executive Order on Improving the Nation’s Cybersecurity [3]. Sec-
tion 4, “Enhancing Software Supply Chain Security,” highlights the pressing need for rigorous
and predictable mechanisms to ensure that software—particularly “critical software”—resists
attack and can be trusted. Critically, it mandates:

[. . . ] ensuring and attesting, to the extent practicable, to the integrity and provenance
of open source software used within any portion of a product.

*This work was supported by France’s Agence Nationale de la Recherche (ANR), program France 2030,
reference ANR-22-PTCC-0001. This funding enables Inria to operate the “transfer program at Campus Cy-
ber” (PTCC) for the benefit of the entire French academic community and the ecosystem of cybersecurity play-
ers/suppliers/users. The PTCC implements a coherent innovation policy and supports various existing knowledge
and technology transfer mechanisms. Support for project leaders ranges from the initial idea through to validation
of potential financial backing.
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On January 16, 2025, a follow-up Executive Order on Strengthening and Promoting Innovation
in the Nation’s Cybersecurity [5] further clarifies the US government’s stance. Acknowledging
that open source software (OSS) plays a “critical role in Federal information systems,” the
order requires agencies to better manage their use of open source software and contribute to
OSS cybersecurity. Federal guidance now expects structured security assessments, thorough
patch management, and responsible engagement with OSS communities.

This regulatory activity on both sides of the Atlantic indicates a concerted effort to reduce
cybersecurity risks by systematically identifying, verifying, and tracking software artifacts, with
particular emphasis on open source ones. At the heart of this effort is the recognition that
software identification — the practice of assigning robust, unique labels to software components
— helps ensure trust, visibility, and accountability in both critical and routine operations. Yet,
existing naming schemes and repository-based references often prove ephemeral, inexact, or
insufficiently secure.

By contrast, content-based, persistent software identifiers enable unambiguous
references that outlive any particular development platform or hosting service, thus
providing a pathway to meet these newly mandated obligations. We contend that SWHIDs
(Software Hash IDentifiers) [8,12,13] — currently progressing to an international standard
under ISO/IEC 18670 [6] — offer a relevant and practical solution to unify software identifi-
cation requirements in the EU Cyber Resilience Act, the U.S. Executive Orders, and broader
international policy frameworks1. Combined with the Software Heritage archival infrastructure
[7,14], SWHIDs enable transparent, verifiable identification of source code at various granulari-
ties (files, directories, version control systems commits, etc.) and, by extension, of any derived
artifact.

In subsequent sections, we examine the current situation, which requires a reflection on the
challenges related to the identifications of open source components (Section 2). Next, we an-
alyze prevalent identifier architectures deployed in open source development and Software Bill
of Materials (SBOM) standardization frameworks (Section 3). Building on this foundation, we
introduce Software Heritage persistent Identifiers (SWHIDs), emphasizing their structural ad-
vantages and pivotal role in addressing compliance requirements outlined in modern regulatory
regimes (Sections 4 and 5). Next, we formulate a strategic implementation roadmap to facilitate
cross-sector adoption of SWHIDs, delineating actionable pathways for integration across govern-
mental policy frameworks, industrial supply chains, and open source communities (Section 7).
Finally, we summarize with a Call to Action for regulators and industry and OSS projects.

2 Context

2.1 Increased Attention On Software Supply Chain Security and
Traceability

Regulatory pressure to secure the global software supply chain has mounted globally, propelled
by new directives such as the CRA in the EU and recent Executive Orders in the U.S. The
latter direct federal agencies to adopt strong software provenance practices, particularly for
open source software. This mirrors the broader goal of ensuring that all software components
— whether proprietary or open source — of IT products on the market are valid, trustworthy,
and not vulnerable to hidden malicious code or supply chain compromises. Multiple convergent
forces explain this heightened attention:

1This type of regulations is either currently in effect in various countries or emerging, depending on current
political shifts. As such, these laws and regulations align with prevailing global trends, particularly in the Western
world. It is therefore likely that similar legislation will continue to be enacted now and in the future. Consequently,
we are focused on identifying the most appropriate way to address this need and are proposing a suitable solution.
While politicians change, the underlying needs remain.
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1. High-profile compromises in open source libraries have shown that a single com-
promised dependency can cascade into critical infrastructure 2,3,4.

2. Widespread use of open source in government IT demands a reliable way to track
vulnerabilities and apply patches.

3. SBOM (Software Bills of Materials) requirements from regulators increasingly ask
for granular, reliable references to each software artifact included in a product.

4. Ephemeral code hosting issues. Even when identifiable, software artifacts may disap-
pear or move to different public hosting places, making it hard or impossible to retrieve
them for subsequent inspection, audit, or reuse [23].

Among the biggest challenges is ensuring not only that each piece of software can be unambigu-
ously identified but also that the artifact corresponding to that identifier remains readily avail-
able and pristine for the foreseeable future. Traditional naming schemes or platform-specific
references can break if repositories are shut down or renamed or of their timeline/history is
overwritten. Thus, a more permanent solution — one that guarantees ongoing accessibility and
verifiability — is urgently sought.

2.2 “Software Identification” and its Challenges

Software identification is meant to assign a stable, unique label to a software artifact so that
all stakeholders can refer to it unambiguously. Three broad challenges emerge:

1. Forging Trust: Government and industry strive to avoid ambiguity about which piece
of code is in use. Conventional labels (“LibraryXYZ 2.0”) can lead to ambiguity, name
collisions, and stale references, which can translate into very concrete attack vectors in
the current era of increasing and potentially very severe attacks targeting the open source
software supply chain.

2. Vulnerability Disclosures: When security researchers disclose a new vulnerability (and
related exploit, if available), its quick and accurate mapping to the affected software ver-
sions or individual files is essential.

3. Compliance and Governance: Regulatory frameworks increasingly insist on traceable
software life cycles. When references are ephemeral or break over time, compliance with
processes that expect software artifacts to remain available in the long-run is strongly
jeopardized.

Moreover, ephemeral code hosting and a tangle of version-control practices make an all-encompassing
“single source of truth” elusive. To address these issues, a content-based identification system
— where the identifier of an artifact is derived from the artifact itself — appears uniquely
suited to meet the long-term viability and security demands imposed by evolving cybersecurity
regulations.

2.3 Emerging Regulatory Context (CRA and Beyond)

The EU’s Cyber Resilience Act (CRA)

The Cyber Resilience Act (CRA) [11] in the European Union advocates stringent standards for
transparency and software traceability. By mandating robust identification and vulnerability
management, the CRA ensures that organizations can:

2https://nvd.nist.gov/vuln/detail/cve-2024-3094
3https://nvd.nist.gov/vuln/detail/cve-2021-44228
4https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
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� Enumerate the software components contained in an IT product using a Software Bill
of Materials (SBOM) document.

� Track software updates and patches accurately.

� Comply with licensing and distribution requirements across jurisdictional boundaries.

U.S. Executive Orders on Cybersecurity

Recent U.S. Executive Orders [3, 5] reflect parallel objectives:

� May 2021: Executive Order on Improving the Nation’s Cybersecurity [3]
Emphasizes “Enhancing Software Supply Chain Security” and underscores the need to
“ensure and attest” the integrity and provenance of open source software present in IT
products.

� January 2025: Executive Order on Strengthening and Promoting Innovation in the Na-
tion’s Cybersecurity [3]
Explicitly recognizes the critical role of open source software in US federal systems, urging
agencies to conduct security assessments, patch management, and best practices for OSS
contributions.

Both sets of regulations converge in their call for advanced identification techniques that can
verify software origin, track vulnerabilities, and meet transparent reporting obligations. A
coherent, persistent identifier infrastructure that accommodates the development
practices of open source software would unify these objectives across agencies and
industry players alike.

3 Software Identifiers: Concepts and Approaches

Software identification has become a crucial area for software supply-chain security and trans-
parency [3, 22]. In practice, we observe two broad categories of identification mechanisms for
software components: intrinsic and extrinsic. This section introduces these two notions, then
surveys several major existing schemes, discussing their advantages and limitations.

3.1 Intrinsic vs. Extrinsic Identifiers

Intrinsic Identifiers. An intrinsic identifier is derived directly and solely from an artifact’s
content (for instance, via a cryptographic hash computed on a byte-sequence representation of
the artifact). Since the identifier depends on the actual bits of the file or source, it provides strong
guarantees of uniqueness and integrity verification without requiring a central authority [13].
Examples of intrinsic identifiers for software artifacts include pure SHA256 checksums, as well as
the Software Hash IDentifiers (SWHIDs) [6, 12], which are typed and incorporate Merkle DAG
hashing of file contents and directory structures. Intrinsic identifier schemes typically excel at:

� Tamper detection: Re-computing the hash quickly reveals if an independently-retrieved
artifact has been altered since its original identifier was computed.

� Minimal external dependencies: No need for a registry or naming authority to main-
tain unique IDs.

� Collision resistance: If well-chosen cryptographic hashes are used, hash collisions are
astronomically unlikely.

A drawback of intrinsic identifiers is often limited human readability, which can complicate
searching or “brand recognition.” Hence, purely intrinsic IDs may be inconvenient for referencing
software in vulnerability databases or licensing catalogs.
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Extrinsic Identifiers. An extrinsic identifier ties software identity to externally maintained
metadata such as vendor and product strings, version labels, or references to package manager
repositories/specific software ecosystems [1, 2, 4, 19]. These approaches ease human use — be-
cause names and versions can be crafted in ways that are more recognizable than cryptographic
hashes — and they can integrate with well-established registries (e.g., the National Vulnerability
Database [9]). However, extrinsic identifiers rely on:

� External registries or naming conventions: A product name or ecosystem-based ID
depends on the whims of the namespace maintainers, that can decide to recycle it, making
it point to different products without downstream identifier users being able to stop that
or even detect it.

� Potential conflicts or name collisions: Different ecosystems may reuse the same name
or version scheme for unrelated artifacts.

� Administrative overhead: Maintaining a large dictionary or “vendor” field, for in-
stance, can be costly.

These issues with extrinsic identifiers for software modules have been known for decades, see,
e.g., [24], but only recently their potentially catastrophic impact on security has started to be
noticed: dependency confusion arising from extrinsic identifiers [17] have been shown as very
efficient attack vectors [10,15,18] which impact a large spectrum of industry players [20].

Hence, while extrinsic identifiers can be highly effective for discoverability, they do not
provide sufficient guarantees for integrity and security.

3.2 Major Existing Identification Approaches

Table 1 summarizes prominent software identifier schemas, their categorization, and key refer-
ences.

Table 1: Identifier schemes for software artifacts or products, and their classification as intrinsic
(content-based) or extrinsic (externally assigned).

Scheme Type Notes / References

SWHID (ISO/IEC 18670) Intrinsic Hash-based, derived from Merkle DAG [6,13].
Checksum (SHA256) Intrinsic Simple direct hash of artifact bytes [22].
SWID (ISO/IEC 19770-2) Extrinsic Tag assigned by vendor [1, 25].
purl Extrinsic Ecosystem-based package name and version [4, 22].
CPE Extrinsic Dictionary-based (vendor, product, version) [19].
SPDXID Extrinsic Arbitrary label in an SBOM [2].

SWID (ISO/IEC 19770-2) (not to be confused with SWHID below) SWID tags embed iden-
tification metadata and optional file hashes in an XML file distributed with installed software [1].
The “tagId,” however, is typically assigned by the software publisher and is not purely derived
from the artifact’s bits.

� Pros: Integrates well with asset and license management tools [25]; recognized ISO stan-
dard.

� Cons: Dependent on vendor definitions, meaning extrinsic identity. Hashing is optional.

� Category: Extrinsic (with optional intrinsic hashes included).

Package URL (purl) Package URL (purl) is a standardized URL-like format to identify soft-
ware packages based on ecosystem, namespace, name, and version [4, 22].
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� Pros: Provides a uniform reference across multiple package registries; widely used in SBOM
tooling [21].

� Cons: Not derived from the file content; depends on naming in package ecosystems or
development forges.

� Category: Extrinsic.

Common Platform Enumeration (CPE) CPE uses a standardized name format, e.g.,
cpe:2.3:a:vendor:product:version, heavily employed by the National Vulnerability Database [9,
19].

� Pros: Strong alignment with vulnerability data (CVEs).

� Cons: Requires consistency in “vendor” and “product” fields; collisions and ambiguities
occur if naming is inconsistent.

� Category: Extrinsic.

SWHID (ISO/IEC 18670) (not to be confused with SWID above) Software Hash IDentifiers
(SWHIDs) are purely content-based, leveraging Merkle DAG hashing of file contents, directories,
and objects commonly found in version control systems such as commits, tags, and repository
states [6, 8, 12,13].

� Pros: Provide guaranteed integrity checks; no single authority needed for ID creation;
well-suited to archiving.

� Cons: Cryptographic hashes are not human-meaningful.

� Category: Intrinsic.

Checksum-Based IDs (e.g., SHA256) The simplest intrinsic approach is a raw hash check-
sum. Many SBOM or distribution workflows embed SHA256 or SHA512 checksums to confirm
authenticity or detect tampering [22].

� Pros: Easy to compute; trivial to verify if content matches.

� Cons: Storing only a checksum says nothing about naming, version, or location; no direct
link to vulnerabilities or licenses.

� Category: Intrinsic.

SPDX Identifiers SPDX [2] is a Linux Foundation project to define a standard SBOM format.
An “SPDXID” references each file or package in an SBOM, but it is assigned arbitrarily (e.g.,
SPDXRef-Package), thus extrinsic. Nonetheless, users often include hash checksums in the SPDX
file for verification [16].

� Pros: Popular in open source compliance; supports embedding multiple referencing schemes
(SWID, SWHID, purl, checksums).

� Cons: The core “SPDXID” itself is not content-derived; extrinsic by default.

� Category: Extrinsic (with optional intrinsic hashes included).

3.3 Key Takeaways

Real-world SBOMs and supply-chain tooling often combine both extrinsic references (to inte-
grate with existing databases, vulnerability feeds, or licensing tools) and intrinsic references
(for strong integrity checks and guaranteed uniqueness) [22].

As a result, best-practices may encourage publishing, for instance, a purl or
SWID plus a cryptographic hash or SWHID to ensure both discoverability and
verifiability.
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4 Software Hash IDentifiers (SWHIDs) and Software Heritage

4.1 Software Hash IDentifiers (SWHIDs)

Software Hash IDentifiers (SWHIDs) [8,12,13] are persistent, content-based cryptographic iden-
tifiers designed to reference software source code artifacts such as source code files, source trees,
commits, and other objects typically found in version control systems. They integrate well with
the Software Heritage archive [7, 14] and can be used to reference any object archived there,
but they are not tied to the archive and are used more broadly in the IT market already. Key
aspects of SWHIDs include:

� Content-based: By hashing byte representations of the content and metadata of the
referenced object, even a single-bit change in the object yields a different identifier.

� Persistent and Tamper-Resistant: SWHIDs do not rely on resolvers or hosting do-
mains. They are rooted in cryptographic hashes that remain valid regardless of where the
code is hosted.

� ISO/IEC 18670 Standardization: The upcoming standard [6] formalizes these identi-
fiers, making SWHIDs an internationally recognized solution.

SWHIDs allow to cryptographically encapsulate both the data content and its context within a
Merkle DAG structure [6], ensuring that each identifier is intrinsically tied to the exact
artifact it references.

At their core, SWHIDs conform to the following syntax:

swh:⟨schema version⟩:⟨object type⟩:⟨object id⟩

where:

� ⟨schema version⟩ identifies the version of the SWHID standard (e.g., 1 for the current
version);

� ⟨object type⟩ indicates the type of the referenced object, one of: cnt, dir, rev, rel, or snp
(explained below);

� ⟨object id⟩ is a cryptographic hash (e.g., SHA1) uniquely identifying the referenced object.

Since each identifier is derived from the underlying artifact itself, duplication is
eliminated at scale when using SWHIDs to identify objects within large collections:
identical files (or directories, revisions, etc.) across multiple repositories map to
the same SWHID.

Core SWHID Categories. The SWHID specification [6] defines five core object types, each
associated to a dedicated object type:

1. Content (cnt): A single file blob whose identifier is derived by hashing its raw content as
a byte sequence. For example:

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2

Any change to the file’s bytes yields a distinct hash.

2. Directory (dir): A tree object referencing a directory-like objects, with all the files and/or
subdirectories it contains. The hash covers not only the identifiers of these child entries
but also metadata such as file names. For example:
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swh:1:dir:d198bc9d7a6bcf6db04f476d29314f157507d505

This ensures two directories with exactly the same contents in the same structure map to
the same identifier. Conversely, any change in any of the contained files or directories, or
associated metadata, will result in a different SWHID.

3. Revision (rev): Commonly referred to as a commit, it points to a root directory and in-
cludes commit metadata (timestamp, author, parent commits, message, etc). For instance:

swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d

4. Release (rel): Analogous to a tag in version-control systems. It references a specific re-
vision and may include a user-friendly version name, descriptive message, cryptographic
signature, etc. For example:

swh:1:rel:22ece559cc7cc2364edc5e5593d63ae8bd229f9f

5. Snapshot (snp): Captures the state of all branches of an entire version control system
repository at the time the SWHID is computed, mapping branch names to specific revisions
or releases. For example:

swh:1:snp:c7c108084bc0bf3d81436bf980b46e98bd338453

Such content-based identifiers outlast the lifetime of any particular hosting plat-
form. Even if a forge ceases operation or a repository is renamed or rewritten in a destructive
manner, the SWHID persists indefinitely because it reflects the artifact’s content
rather than its external location.

Qualified Identifiers. Beyond these core identifiers, qualified SWHIDs can include optional
qualifiers that provide additional context or specificity [6]:

� lines qualifier (lines=...): Indicates line ranges within a file. For example:

swh:1:cnt:94a9ed024d3859793618152ea559a168bbcbb5e2;lines=112-116

references only lines 112 to 116 of a particular content object.

� origin qualifier (origin=...): Captures the URL (or other location) where the artifact
was originally observed. For instance:

swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d;

origin=https://github.com/example/repo

� anchor, path, . . . and other contextual qualifiers: These can pinpoint subdirectories,
sub-elements, or further metadata crucial for a precise reference. For example:

swh:1:dir:d198bc9d...;path=/docs;anchor=readme-section

By including these qualifiers, SWHIDs offer a rich, yet stable, method for referencing not only
entire objects but specific portions within them or outside contexts. They remain backward-
compatible with the core format, ensuring that stakeholders can resolve the essential reference
even if they do not recognize or care about the added qualifiers.
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4.2 Software Heritage as a Universal Archive

Software Heritage is a non-profit initiative that archives publicly accessible source code along
with its development history [12]. Once ingested, code is never deleted. This ensures:

� Comprehensive Coverage: Continuous crawling of major forges, distribution archives,
and package repositories. Software Heritage is the largest public archive of source code
and accompanying development history having archived, as of March 2025, more than 23
billion unique source code files and almost 5 billion unique version control system commits,
coming from more than 350 million software projects.

� Verifiability: Any artifact can be retrieved from the archive, ensuring long-term avail-
ability regardless of repository closures or reorganizations.

� Merkle-DAG Storage: Source code artifacts are stored in a cryptographically sound
data structure, enabling scalable de-duplication and reliable integrity checks [13].

With these features, SWHIDs and the Software Heritage archive jointly form a
solid backbone for compliance, reproducibility, and vulnerability management —
fully aligned with the goals articulated in both the CRA and U.S. Executive Orders.

5 Comparative Analysis of Existing Identifiers

Existing identification methods — such as package manager names, Git commit hashes, or
platform-specific references — offer limited guarantees of future verifiability, especially if the
original repository disappears or version tags are renamed. None inherently guarantees the
persistence and global verifiability that emerging regulations demand. Common pitfalls include:

� Platform Lock-in: Vendor or hosting site might go offline, breaking references.

� Namespace Collisions: Multiple projects or forks reuse the same naming convention,
causing confusion.

� No Lifelong Guarantee: If the source code moves, the original identifier no longer
resolves.

By contrast, SWHIDs (in conjunction with Software Heritage) address these shortcomings
through a content-based, technology-agnostic approach. This architecture provides a reliable
foundation for policy compliance and software best practices alike [22].

5.1 Key Advantages of SWHIDs with Qualifiers

Qualified SWHIDs not only provide precise, fine-grained references to software artifacts but also
combine intrinsic and extrinsic identification in a single schema, offering three distinct benefits:

1. Intrinsic Identification (Cryptographic Guarantees). Because SWHIDs are com-
puted from the content of each artifact, they deliver tamper-proof uniqueness. Any minor
change to the underlying data alters the cryptographic hash, producing a different iden-
tifier. This property endures regardless of where or how the artifact is hosted, thereby
preventing collisions or ambiguities.

2. Traceability Within the Software Heritage Archive. Since each artifact referenced
by a SWHID can identify a node in the Software Heritage Merkle DAG (provided that the
referenced artifact has actually been archived there), qualified SWHIDs integrate seam-
lessly with the archive’s structure. Revisions, directories, and other nodes are interlinked,
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enabling stakeholders to traverse the development history of a project, pinpoint code prove-
nance, and verify relationships between artifacts. With qualifiers such as lines or path,
one can even trace the use or evolution of specific fragments of a code base, solidifying the
global audit record of collaborative software development.

3. Extrinsic Context (Availability and Origin). The origin qualifier captures the
external source from which the software artifact was fetched. Crucially, because Software
Heritage also archives that origin, it preserves availability for future reference. Even if the
original repository goes offline or relocates, the archive holds a snapshot of that location,
ensuring that both the intrinsic hash and the extrinsic origin URL remain resolvable.
Hence, SWHIDs combine the best of both worlds: robust content-based identification,
enriched by the historical and contextual information provided by extrinsic references.

By coupling intrinsic cryptographic guarantees with the broader traceability offered
by the Software Heritage archive — and by recording where the artifacts were
first encountered — SWHIDs with qualifiers deliver a comprehensive, future-proof
approach to software identification.

5.2 Impact of SWHIDs on CRA, U.S. Executive Orders, and Other
Regulations

Mutual Reinforcement of Global Mandates

The CRA’s focus on transparency, coupled with the U.S. Executive Orders’ emphasis on
secure open source usage, sets a global trend in favor of deep software traceability. Governments
and industries share overlapping concerns: rapid security patching, unambiguous references, and
reproducibility.

SWHID: Essential to Meeting Regulatory Requirements

� SBOM Precision: Tying each component to a cryptographic identifier ensures the SBOM
remains accurate over time, even if code moves to another location.

� Regulatory Alignment: Because SWHIDs do not depend on ephemeral structures, they
are well suited to cross-jurisdictional regulations, whether in the EU, U.S., or elsewhere.

� Open Source Compliance: The calls to secure OSS supply chains require that each OSS
artifact is referenced unambiguously. SWHIDs fulfill this requirement by linking code to
an immutable record within the Software Heritage archive.

6 Proposed Position: SWHID as the Cornerstone

Position Statement: SWHIDs, backed by the Software Heritage archive, should serve
as the default reference mechanism for software artifacts under the Cyber Resilience Act
and related U.S. Executive Orders.

Critical Use Cases

1. Vulnerability Management: SWHIDs let security teams rapidly and unambiguously
locate at-risk components.

2. Software Bill of Materials (SBOM): Defining SBOM entries via SWHIDs streamlines
compliance and automates patch workflows.
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3. Provenance Tracking: The open source emphasis in the U.S. Executive Orders particu-
larly benefits from a tool to confirm the lineage of code. SWHIDs provide these assurances
cryptographically.

Benefits

� Global Interoperability: Works across different version-control systems and package
ecosystems.

� Longevity: Once assigned, the identifier outlasts hosting changes or platform shutdowns.

� Auditable Development: The Merkle-DAG structure — which underpins how SWHIDs
are computed and is materialized by the Software Heritage archive—pinpoints the entire
evolution history of a software product, fostering accountability and transparency for both
public and private code bases.

7 Implementation and Roadmap

7.1 Strategies for Stakeholders

1. Policy Makers:

� Reference ISO/IEC 18670 [6] (SWHIDs) in CRA guidelines and U.S. federal com-
pliance frameworks.

� Incentivize the usage of SWHIDs across government procurements and open source
community funding programs.

2. Software Vendors:

� Incorporate SWHID generation tools into CI/CD pipelines, ensuring that each release
and patch has a stable, verifiable ID.

� Ensure that the open source parts of products — be they developed in-house or reused
from 3rd parties — are archived by Software Heritage.

� Collaborate with major forges to standardize references to SWHIDs in compliance
reports.

3. Open Source Communities:

� Publish official releases with associated SWHIDs, making the trust chain more straight-
forward for government and enterprise users.

� Ensure that code and associated development history is archived by Software Her-
itage, especially but not only at release time.

� Adopt best practices for referencing third-party dependencies by SWHIDs in docu-
mentation and SBOMs.

7.2 Recommended Steps and Timeline

� Short Term (6–12 Months): Incorporate SWHIDs into existing SBOM generation
tools, referencing them in procurement guidelines and vulnerability advisories.

� Medium Term (1–2 Years): Formalize SWHIDs in major open source project gover-
nance. Create or extend standards (SPDX, CycloneDX) to reflect SWHIDs for all depen-
dencies.
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� Long Term (>2 Years): Normalize SWHIDs as a fundamental layer in both EU and
U.S. regulatory requirements. Support universal integration so that regulatory audits rely
on content-based identifiers by default.

8 Conclusion and Call to Action

In an era defined by systemic cybersecurity challenges, content-based, persistent software identi-
fiers offer a uniquely powerful response to new regulatory demands. The Cyber Resilience Act
and U.S. Executive Orders on cybersecurity collectively affirm that robust, verifiable identifica-
tion is necessary to ensure trust, compliance, and innovation in the software ecosystem.

Coupling SWHIDs and the Software Heritage archive provides:

1. Trust and Transparency: Stakeholders can unequivocally track each artifact’s prove-
nance.

2. Regulatory Alignment: Mandates on SBOM, open source security, and patch manage-
ment can be met with minimal friction.

3. Innovation and Cost Savings: Government agencies and the broader ecosystem benefit
from simplified compliance checks and lower risk of supply chain compromise.

Call to Action:

� Regulators: Incorporate SWHIDs explicitly into both the CRA implementation
guidance and the U.S. federal software procurement rules.

� Industry and OSS Projects: Adopt SWHIDs in continuous integration pipelines
and SBOM tooling, ensuring consistent usage and verifiability.

� Sustainability: Continue investing in the open, neutral mission of Software Her-
itage to ensure perpetual access to the reference archive.

As evolving cybersecurity legislation accelerates the need for persistent and reliable software
identification, SWHIDs and Software Heritage stand ready to serve as a cornerstone of
next-generation software supply chain security.
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